Lysis‐lysogeny coexistence: prophage integration during lytic development
نویسندگان
چکیده
The infection of Escherichia coli cells by bacteriophage lambda results in bifurcated means of propagation, where the phage decides between the lytic and lysogenic pathways. Although traditionally thought to be mutually exclusive, increasing evidence suggests that this lysis-lysogeny decision is more complex than once believed, but exploring its intricacies requires an improved resolution of study. Here, with a newly developed fluorescent reporter system labeling single phage and E. coli DNAs, these two distinct pathways can be visualized by following the DNA movements in vivo. Surprisingly, we frequently observed an interesting "lyso-lysis" phenomenon in lytic cells, where phage integrates its DNA into the host, a characteristic event of the lysogenic pathway, followed by cell lysis. Furthermore, the frequency of lyso-lysis increases with the number of infecting phages, and specifically, with CII activity. Moreover, in lytic cells, the integration site attB on the E. coli genome migrates toward the polar region over time, leading to more spatial overlap with the phage DNA and frequent colocalization/collision of attB and phage DNA, possibly contributing to a higher chance for DNA integration.
منابع مشابه
The Adaptation of Temperate Bacteriophages to Their Host Genomes
Rapid turnover of mobile elements drives the plasticity of bacterial genomes. Integrated bacteriophages (prophages) encode host-adaptive traits and represent a sizable fraction of bacterial chromosomes. We hypothesized that natural selection shapes prophage integration patterns relative to the host genome organization. We tested this idea by detecting and studying 500 prophages of 69 strains of...
متن کاملRole of the lytic repressor in prophage induction of phage as analyzed by a module-replacement approach
Using a module exchange approach, we have tested a longstanding model for the role of Cro repressor in prophage induction. This epigenetic switch from lysogeny to the lytic state occurs on activation of the host SOS system, which leads to specific cleavage of CI repressor. It has been proposed that Cro repressor, which operates during lytic growth and which we shall term the lytic repressor, is...
متن کاملThe Human Gut Phage Community and Its Implications for Health and Disease
In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of uni...
متن کاملSwitch in the transposition products of Mu DNA mediated by proteins: Cointegrates versus simple insertions.
Bacteriophage Mu is a self-contained mobile unit encoding functions that mediate its movement. There appear to be two alternate pathways for Mu DNA transposition that differ with respect to the end products they generate. During the lytic cycle of phage Mu growth the end products of transposition are predominantly cointegrates in an experimental system in which the induced Mu prophage is locate...
متن کاملAn Unusual Phage Repressor Encoded by Mycobacteriophage BPs
Temperate bacteriophages express transcription repressors that maintain lysogeny by down-regulating lytic promoters and confer superinfection immunity. Repressor regulation is critical to the outcome of infection-lysogenic or lytic growth-as well as prophage induction into lytic replication. Mycobacteriophage BPs and its relatives use an unusual integration-dependent immunity system in which th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017